Spectrum of Different Spinal Disorders Presenting to Neurosurgical Department of Public Sector Tertiary Care Hospitals of Peshawar

ADNAN AHMED, MOHAMMAD ISHAQ, MUMTAZ ALI, MUSAWER KHAN
SOHAIL AHMAD, SYED NASIR SHAH, SAJJAD AHMAD, MANSOOR AHMAD
ADNAN KHALIQ

Department of Neurosurgery, Lady Reading Hospital, Medical Teaching Institution
Peshawar – Pakistan

DOI: https://doi.org/10.36552/pjns.v23i4.391

ABSTRACT
Objectives: To assess the spectrum of different spinal disorders presenting to the Neurosurgical department of public sector tertiary care hospitals of Peshawar.

Materials and Methods: This was a retrospective study carried out in the Neurosurgery departments of two public sector tertiary care hospitals in district Peshawar from January 2012 to December 2018. Our inclusion criteria comprised of all those patients who were having spinal abnormalities irrespective of age and gender, admitted either via emergency or OPD. We excluded those patients who were dead on arrival or whose data was lacking including those who did not do their follow up and those who were not given consent for the study.

Results: Out of total 5,579 patients, male to female ratio was 1:1.7. The age range was from 6 days to 78 years. Elective cases were 63.61% (n = 3,549) and emergency were 36.37% (n = 2,030). TSCI were 35.01% (n = 1,953) and NTSCI were 3,626 (n = 64.99%). Out of all patients, 91.03% (n = 5,079) were treated surgically. About 79% (n = 4,406) had a good outcome.

Conclusion: We collected data and made a survey of the spectrum of different spinal abnormalities resulting from various etiologies focused over the last 6 years. We found a variety of cases presenting to our departments of neurosurgery. Non traumatic spinal injuries are more frequent as compared to traumatic ones.

Keywords: Traumatic spinal injuries, Non traumatic spinal injuries, epidemiology, WHO spinal injury database.

INTRODUCTION
Spinal cord abnormalities are devastating conditions that results in functional, psychological and social problems. Its incidence is different between different countries across the globe and is estimated at 15-40 cases per million population. It is documented that damage to neural elements in the spinal canal (spinal cord and cauda equina) results in temporary or permanent neurological deficit that arises from different causes including trauma. Spinal cord lesions can result from different causes that is broadly grouped into two categories, (a) traumatic spinal cord injury (TSCI) and (b) Non traumatic spinal cord injury (NTSCI). TSCI is the commonest type and accounts for the largest proportion of the population TSCI occurs when an external physical impact occurs, that damages the spinal cord acutely. The major causes of TSCI in developing countries are motor vehicle accidents, falls and assaults, with motor vehicle accidents being on top (41.4%). Complete spinal injuries (56.5%) are more frequent than incomplete spinal injuries (43.5%). Non traumatic spinal cord injury (NTSCI) is defined as any spinal cord damage that has not been caused by any external trauma and
results from an acute or chronic disease process. Another term used for NTSCI is spinal cord damage or spinal cord myelopathy. According to the literature major causes of NTSCI include degenerative spine diseases, neoplasms (benign or malignant), infections, congenital and developmental, vascular and autoimmune disorders. These NTSCI occurs at any age and its incidence is more than that of TSCI. It may be the case in the developed countries but it is proposed that incidence of NTSCI will increase in coming years due to aging population.

Spinal cord injuries have serious physical, social and vocational effects for patients and their families and results in loss of independence and permanent high lifelong mortality rates. Secondly, costs for care of patients with spinal cord damage in much more which highlights the importance of prevention that we can deliver. The development of effective treatment modalities is critically important for those patients in whom we can’t prevent spinal cord injuries. Thereby it is important to have an idea about the extent of problem in terms of demographics, etiology and outcome, in order to implement appropriate preventive and treatment strategies.

MATERIALS AND METHODS

Study Design

It was a retrospective study conducted at neurosurgery departments of public sector tertiary care hospitals of district Peshawar, KPK province of Pakistan from January 2012 to December 2018. Approval for the study was taken from ethical committee Lady Reading hospital, Peshawar.

Inclusion Criteria

Our inclusion criteria comprised of all those patients who were having spinal abnormalities irrespective of age and gender, admitted either via. emergency or OPD (including referral cases from other centers/units). Both conservatively and surgically treated patients were included.

Exclusion Criteria

We excluded those patients who were dead soon after arrival. We also excluded those patients whose data was lacking including those who did not do their follow up and those who did not give consent for the study.

Data Collection

The data was collected from hospital database, ward/ O.T and emergency registers, patient record files and follow up details. Data was entered in a designed Proforma comprising of patient demographics, type of disease, level of disease, cause of spinal cord injury, treatment modality and outcome of treatment. Three months post treatment outcome was assessed in terms of relief of symptoms, complications and mortality. It was measured as good, satisfactory and poor.

The outcome was measured as “Good”, if no complications occurred and the patient became totally free of disease with return of normal routine daily activities. “Satisfactory” outcome was labelled if little relief of symptoms with no complications and routine daily activities of the patient were disturbed. Whereas “Poor” outcome meant if no relief of symptoms or little relief of symptoms occurred along with complications.

Data Analysis

The data was analyzed using SPSS version 20.

RESULTS

Age Incidence

Total number of patients were 5,914. Out of which 335 patient’s data was lacking so 5,579 patients were included in the study as per inclusion criteria. The age range was from 6 days to 78 years.

Gender Distribution

Male patients were 58.82% (n = 3,282) and female were 41.17% (n = 2,297). Male to female ratio was 1.7:1.

Clinical Presentation

Elective cases were 63.61% (n = 3,549) and emergency were 36.37% (n = 2,030). TSCI were 35.01% (n = 1,953) and NTSCI were 3,626 (n = 64.99%). The proportion of each disease in TSCI group and NTSCI group is shown in graph 1 and graph 2 respectively. The distribution of each disease in each group is shown in tables 1-5. Out of all patients 91.03% (n = 5,079) were treated surgically and 8.96% (n = 500) were treated conservatively.
Spectrum of Different Spinal Disorders Presenting to Neurosurgical Department of Public Sector Tertiary Care

Graph 1: Traumatic Spinal Cord Injuries.

Non Traumatic Spinal Cord Injury (NTSCI)

n=3626

Graph 2: Non-traumatic Spinal Cord Injury.

Table 1: Distribution of Disease.

<table>
<thead>
<tr>
<th>Total</th>
<th>Cervical Spine</th>
<th>Dorsal Spine</th>
<th>Lumber Spine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PIVD</td>
<td>Stenosis/Myelopathy</td>
<td>PIVD</td>
</tr>
<tr>
<td></td>
<td>357</td>
<td>431</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>2363</td>
<td>788</td>
<td>11</td>
</tr>
</tbody>
</table>

Outcome

Regarding the outcome, 78.97% (n = 4,406) had a good outcome, 15.27% (n = 852) had satisfactory outcome and 3.06% (n = 171) had poor outcome, while 2.68% (n = 150) died during this study.
Table 2: Type of Disease.

<table>
<thead>
<tr>
<th>Type of Disease</th>
<th>Number Cases of</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meningocele/Myelomeningocele</td>
<td>689</td>
<td>1045</td>
</tr>
<tr>
<td>Tethered Cord Syndrome</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>Arnold Chiari malformation</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>CVJ bony Anomalies</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Type of Tumor.

<table>
<thead>
<tr>
<th>Type of Tumor</th>
<th>Number of Cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extradural</td>
<td>48</td>
<td>25.80</td>
</tr>
<tr>
<td>Intradural extramedullary</td>
<td>71</td>
<td>38.17</td>
</tr>
<tr>
<td>Intramedullary</td>
<td>67</td>
<td>36.02</td>
</tr>
<tr>
<td>Total</td>
<td>186</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4: Cases of Carries Spine and Hydatid Cyst.

<table>
<thead>
<tr>
<th>Carries Spine</th>
<th>Hydatid Cyst</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Spine</td>
<td>Dorsal Spine</td>
<td>Lumbar Spine</td>
</tr>
<tr>
<td>14</td>
<td>111</td>
<td>47</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>175</td>
</tr>
</tbody>
</table>

Table 5: Complications.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Cases</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implant Removal</td>
<td>07</td>
<td></td>
</tr>
<tr>
<td>Displaced Implant/Implant Repositioning</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>CSF Leak</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Outcome.

<table>
<thead>
<tr>
<th>Total</th>
<th>Outcome</th>
<th></th>
<th></th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good</td>
<td>Satisfactory</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>5,579</td>
<td>78.97% (n=4,406)</td>
<td>15.27% (852)</td>
<td>3.06% (n=171)</td>
<td>2.68% (n=150)</td>
</tr>
</tbody>
</table>

DISCUSSION

It is important to understand the factors responsible for spinal cord injuries (SCI). These factors are paramount in injury prevention. Literature shows that trauma is responsible for the majority of cases of spinal injuries, but our study shows that non-traumatic causes are much more frequent as compared to traumatic ones. Those studies describe the demographic data, causes, neurological deficit, clinical outcomes and disabilities related to traumatic etiologies. The major causes of TSCI are road traffic accidents (RTA) followed by a history of falls and assaults. In a study done in Africa RTAs are responsible for 70% of cases, whereas in Denmark transport related injuries are responsible for 59.6% cases. In a study done in Mexico, 41.3% cases due to road traffic accidents while 30.9% were due to history of falls. In South Asia falls are responsible for 40% of traumatic spinal injuries. A study done by Mathur et al in India found that 53% patients had a history of fall. Assaults, including firearm injuries are the third most common cause responsible for TSCI. A study done in South America showed 16.8% cases of firearm injuries, whereas a Brazilian study showed 42% cases, while it was 25% in a study from Turkey and 21% from Africa. Other studies from developed countries showed an incidence of 11.7%, 4% and 2% from USA, Europe and Canada respectively. According to data from USA National Spinal Cord Injury Statistical Database, NTSCI prevalence is 25-60%. In recent studies the more accurate result is 23%. Male to female ratio is 55% vs. 45% in one study. A study found the average age of 31 years in patients with TSCI. The average age of the patients with NTSCI is more than 30 years in different studies. A study in Mexico has shown 45.2 years as the average age of patients with NTSCI. We found the average age of 39.6 years. The male gender is most frequently affected group. Its incidence is 82.17% reported in one study. Such results were shown in other studies as well in which TSCI was higher in males as compared to females. This male to female ratio is a bit more balanced in NTSCI group. A study found NTSCI in the thoracic region (71.3%) more frequently and they attributed this to fact that spinal tumors that compress the cord are mostly found in dorsal spine. As we are concerned only with the spinal diseases, so we found lumber region to be more affected because of higher prevalence of lumber degenerative spinal diseases. We also found more tumor incidence in the dorsal...
spine region. Other studies have shown the same results.21,23–25 Other studies have found more incidence of TSCI as compared to TSCI. A study by Cosar et al found this incidence as 23% vs. 77%.26 Our results are the same if we exclude the degenerative spinal diseases and congenital spinal diseases below L2 level. Battie et al in his study found that the prevalence of degenerative spine disease ranges from 20-83%.22 Matsumoto and colleagues found that degenerative spine disease is more frequent in cervical spine (86% in men and 89% in women above the age of 60 years).27 Hanagai et al and Kanayama et al, found highest prevalence of degenerative spine disease in the lumber region, 67% and 49.5% respectively.28, 29 Our findings are consistent with these results. Older age was associated with degenerative spine disease in each region and is more common in the male gender.

A study found 67% spinal cord abnormalities with complicated bony malformations whereas 37% cases had simple abnormalities.30 55% of children with congenital bony pathology had associated spinal neural axis abnormality.31–34 Basu in his study found that incidence of spinal cord abnormalities is highest in cervical and thoracic regions, however they only included patients with hemivertebrae in cervical, thoracic and lumbar region.30 Another study found 70%, 61% and 54% incidence of congenital spinal abnormality in cervical, lumber and thoracic regions respectively.35

Duong et al in 2012 concluded that incidence rates of benign primary spinal tumors (0.76/100,000) were higher than malignant tumors (0.22/100,000). In children, the incidence of malignant tumors is more as compared to those of adults.36 In a study done in Croatia, Materljan et al., found the incidence of benign spinal tumors as 1.6/100,000.37 The hospital based incidence was found to be 0.24/100,000 persons per year in a study in India. Primary malignant spinal cord tumors and vertebral tumors comprised of 32.58%, benign tumors were 67.42%. Mets were present in 16.38% cases.38

Spinal tuberculosis is apparently the primary cause of non-traumatic spinal cord lesions in Africa and, together with neoplasms, represents almost half of the causes. Lee found 85% of spinal infections as tuberculous spine infections, whereas in his another study, he reported 70.1% cases of tuberculous spine infections.39, 40 Kim et al found that pyogenic spondylodiscitis is more as compared to Tuberculous spondylodiscitis (62.7% vs. 37.3%).41 In another study, the pyogenic infection was 78.3% as compared to tuberculous spine infection (21.7%). The in hospital mortality in studies published on TSCI groups is different in different regions. It is 10.8–34.6% in Africa, 3.1–12.6% in USA, 1.4–3.4% in the Western Pacific (only China) and 1.115.9% in Europe.42 In adult group the mortality was 23.1%. In another study of two adult NTSCI population, the in hospital deaths varied from 9.6% to 11.4% cases.43, 44 In our study, the mortality was 2.68%.

LIMITATIONS/RECOMMENDATIONS

The limitation of this study was that data was collected from only two tertiary care hospitals of district Peshawar. So these results are not a true representative of entire province or country. Epidemiological data for spinal injuries are required to increase the allocation of health care related resources in the form of budgeting and establishing separate research units aiming at preventing, treating & rehabilitating and innovative research work for treating these abnormalities. Further research will demonstrate a significant rise in the incidence of SCIs in the coming years. This knowledge can help in healthcare planning in our country.

CONCLUSION

We collected data and made a survey of spectrum of different spinal abnormalities resulting from various etiologies focused over the last 6 years. Scarcity of data, incomplete information and lack of proper standardized classification are obvious hurdles for definite conclusion. Standard registration of spinal cord injuries (SCI) is needed for prevention, treatment and further research work. We found a variety of spinal abnormalities in our study and a lot of burden on public sector tertiary care hospitals. Non traumatic spinal injuries are more frequent as compared to traumatic ones.

REFERENCES

Additional Information

Disclosures: Authors report no conflict of interest.

Ethical Review Board Approval: The study was conformed to the ethical review board requirements.

Human Subjects: Consent was obtained by all patients/participants in this study.

Conflicts of Interest:

In compliance with the ICMJE uniform disclosure form, all authors declare the following:

Financial Relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work.

Other Relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Address for Correspondence:

Dr. Mohammad Ishaq
Assistant Professor, Department of Neurosurgery,
Lady Reading Hospital – Medical Teaching Institution, Peshawar – Pakistan
Email: drmohammadishaq@yahoo.com
<table>
<thead>
<tr>
<th>Sr.#</th>
<th>Author’s Full Name</th>
<th>Intellectual/Contribution to Paper in Terms of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Adnan Ahmed</td>
<td>1. Proposed topics and Basic Study Design, methodology.</td>
</tr>
<tr>
<td></td>
<td>(Main/Principal Author)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Mohammad Ishaq</td>
<td>2. Data collection and calculations</td>
</tr>
<tr>
<td></td>
<td>(2nd Author)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Mumtaz Ali</td>
<td>3. Analysis of data.</td>
</tr>
<tr>
<td></td>
<td>(3rd Author)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Musawer Khan</td>
<td>4. Literature review and manuscript writing</td>
</tr>
<tr>
<td></td>
<td>(4th Author)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Sohail Ahmad</td>
<td>5. Paper writing</td>
</tr>
<tr>
<td></td>
<td>(5th Author)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Syed Nasir Shah</td>
<td>6. Study Design and methodology</td>
</tr>
<tr>
<td></td>
<td>(6th Author)</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Sajjad Ahmad</td>
<td>7. Interpretation of results</td>
</tr>
<tr>
<td></td>
<td>(7th Author)</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Mansoor Ahmad</td>
<td>8. Referencing</td>
</tr>
<tr>
<td></td>
<td>(8th Author)</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Adnan Khaliq</td>
<td>9. Quality insurer</td>
</tr>
<tr>
<td></td>
<td>(9th Author)</td>
<td></td>
</tr>
</tbody>
</table>

Signature by the author(s)

Date of Submission: 12-10-2019
Date of Revision: 15-11-2019
Date of Online Publishing: 25-12-2019
Date of Print: 31-12-2019